Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[1-[(2-fluorobenzylidene)amino]quinolinium [plumbate(II)-tri-*µ*iodido]]

Hai-Rong Zhao

School of Biochemical and Environmental Engineering, Nanjing Xiaozhuang College, Nanjing 210017, People's Republic of China Correspondence e-mail: zhaohairong5@yahoo.com.cn

Received 28 October 2011; accepted 1 December 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.020 Å; R factor = 0.047; wR factor = 0.082; data-to-parameter ratio = 19.7.

The title complex, $\{(C_{16}H_{12}FN_2)[PbI_3]\}_n$, consists of 1-[(2fluorobenzylidene)amino]quinolinium cations and a polymeric PbI₃⁻ anion formed by face-sharing PbI₆ octahedra. These octahedra form straight and regular infinite chains along the b axis. In the asymmetric unit, one cation and one anionic $[PbI_3]^-$ fragment are observed in general positions. Polymeric chains are produced by the glide plane perpendicular to the *a* axis.

Related literature

For second-order non-linear optical (NLO) properties, pyroelectricity, ferroelectricity and triboluminescence of inorganic-organic hybrid materials, see: Guloy et al. (2001); Horiuchi et al. (2010); Chen et al. (2001). For related structures, see: Bi et al. (2008); Zhang et al. (2006); Duan et al. (2011); Zhao et al. (2010).

Experimental

Crystal data

$(C_{16}H_{12}FN_2)[PbI_3]$
$M_r = 839.17$
Orthorhombic, Pbca
a = 20.888 (4) Å
b = 7.9112 (15) Å
c = 25.197 (5) Å

Data collection

Siemens SMART CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2002) $T_{\min} = 0.747, T_{\max} = 0.882$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.082$ S = 0.964090 reflections

 $V = 4163.8 (14) \text{ Å}^3$ Z = 8Mo Ka radiation $\mu = 12.56 \text{ mm}^-$ T = 296 K $0.04 \times 0.02 \times 0.01 \ \mathrm{mm}$

30847 measured reflections 4090 independent reflections 1770 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.156$

208 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.96 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.95 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of China for financial support (grant No. 21002096).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2337).

References

- Bi, W., Louvain, N., Mercier, N., Luc, J., Rau, I., Kajzar, F. & Sahraoui, B. (2008). Adv. Mater. 20, 1013-1017.
- Chen, X. F., Duan, C. Y., Zhu, X. H., You, X. Z., Raj, S. S. S., Fun, H. K. & Wu, J. (2001). Mater. Chem. Phys. 72, 11-15.
- Duan, H. B., Zhao, H. R., Ren, X. M., Zhou, H., Tian, Z. F. & Jin, W. Q. (2011). Dalton Trans. 40, 1672-1683.
- Guloy, A. M., Tang, Z. J., Miranda, P. B. & Srdanov, V. I. (2001). Adv. Mater. 13. 833-837.
- Horiuchi, S., Tokunaga, Y., Giovannetti, G., Picozzi, S., Itoh, H., Shimano, R., Kumai, R. & Tokura, Y. (2010). Nature (London), 463, 789-792.
- Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instrument Inc., Madison, Wisconsin, USA.
- Zhang, Z. J., Guo, G. C., Xu, G., Fu, M. L., Zou, J. P. & Huang, J. S. (2006). Inorg. Chem. 45, 10028-10030.
- Zhao, H. R., Li, D. P., Ren, X. M., Song, Y. & Jin, W. Q. (2010). J. Am. Chem. Soc. 132, 18-19.

supplementary materials

Acta Cryst. (2012). E68, m19 [doi:10.1107/S1600536811051853]

catena-Poly[1-[(2-fluorobenzylidene)amino]quinolinium [plumbate(II)-tri-µ-iodido]]

H.-R. Zhao

Comment

Inorganic-organic hybrid materials have attracted intense interest in recent years, owing to their technologically important physical properties from optics to electronics, such as second-order nonlinear optical (NLO) properties, (Guloy *et al.*, 2001) pyroelectricity, ferroelectricity (Horiuchi *et al.*, 2010) and triboluminescence (Chen *et al.*, 2001).

Inorganic metal-halide building blocks exhibiting $[MX_6]^{4-/3-}$ fragments ($M = \text{Sn}^{2+}$, Pb^{2+} , Bi^{3+} , Sb^{3+} ; $X = \text{F}^-$, Cl^- , Br^- , Γ) have received special attention in the construction of inorganic-organic hybrid materials (Zhang *et al.*, 2006; Bi *et al.*, 2008). Herein we report the crystal structure of the title compound (I) (Figure 1).

The title compound crystallizes in the orthorhombic space group Pbca with an asymmetric unit containing one anionic PbI₃ fragment together with one Schiff base cation. The polymeric anion $[PbI_3]_n^n$ possesses slightly distorted PbI₆ octahedra which are linked to polymeric chains by symmetry related atoms (symmetry code 1/2 - x, 1/2 + y, z). Bond lengths and angles are in good agreement with the other structurally characterized compounds with the same anion (Zhao *et al.*, 2010; Duan *et al.*, 2011)

Experimental

A mixture of PbI_2 (461.3 mg, 1.0 mmol) and 1-(2-fluorobenzylideneamino)-quinolinium iodide (377.9 mg, 1.0 mmol) in a 1:1 molar ratio in DMF was slowly evaporated to produce orange-red needle-shaped crystals. The yield of the compound (1) was 67%.

Refinement

H atoms were placed to the bonded parent atoms in geometrically idealized positions and refined as riding atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. Molecular structure of the cation showing displacement ellipsoids at the 30% probability level.

Fig. 2. Cut-out of the polymeric polyanion consisting of face-sharing PbI_6 octahedra showing displacement ellipsoids at the 30% probability level.

catena-Poly[1-[(2-fluorobenzylidene)amino]quinolinium [plumbate(II)-tri-µ-iodido]]

Crystal data

$(C_{16}H_{12}FN_2)[PbI_3]$	Z = 8
$M_r = 839.17$	F(000) = 2976
Orthorhombic, Pbca	$D_{\rm x} = 2.677 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 2ac 2ab	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 20.888 (4) Å	$\mu = 12.56 \text{ mm}^{-1}$
b = 7.9112 (15) Å	T = 296 K
c = 25.197 (5) Å	Neddle, orange-red
$V = 4163.8 (14) \text{ Å}^3$	$0.04 \times 0.02 \times 0.01 \text{ mm}$

Data collection

Siemens SMART CCD area-detector diffractometer	4090 independent reflections
Radiation source: fine-focus sealed tube	1770 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.156$
phi and ω scans	$\theta_{\text{max}} = 26.0^\circ, \ \theta_{\text{min}} = 1.6^\circ$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2002)	$h = -25 \rightarrow 25$
$T_{\min} = 0.747, \ T_{\max} = 0.882$	$k = -9 \rightarrow 9$
30847 measured reflections	$l = -31 \rightarrow 31$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.082$	H-atom parameters constrained
<i>S</i> = 0.96	$w = 1/[\sigma^2(F_o^2) + (0.0158P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
4090 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
208 parameters	$\Delta \rho_{max} = 0.96 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.95 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C12	-0.1124 (8)	0.409 (2)	0.2967 (6)	0.073 (5)
Pb1	0.24868 (3)	0.30676 (6)	0.394853 (19)	0.04686 (15)
I1	0.31600 (4)	0.05236 (13)	0.48094 (3)	0.0538 (3)
12	0.12891 (4)	0.05643 (12)	0.40030 (4)	0.0583 (3)
13	0.31533 (4)	0.05436 (13)	0.30998 (3)	0.0596 (3)
F1	-0.1508 (4)	0.4781 (12)	0.2589 (4)	0.111 (4)
N1	0.0224 (5)	0.2690 (14)	0.1530 (4)	0.049 (3)
N2	0.0119 (5)	0.2585 (14)	0.2088 (4)	0.058 (3)
C1	-0.0187 (7)	0.2012 (17)	0.1191 (5)	0.060 (4)
H1	-0.0562	0.1525	0.1318	0.073*
C2	-0.0062 (7)	0.2018 (18)	0.0630 (6)	0.071 (5)
H2	-0.0359	0.1579	0.0392	0.086*
C3	0.0503 (7)	0.2683 (18)	0.0453 (6)	0.064 (4)
Н3	0.0597	0.2675	0.0093	0.077*
C4	0.0927 (7)	0.336 (2)	0.0803 (7)	0.070 (5)
C5	0.1517 (7)	0.408 (2)	0.0643 (6)	0.090 (6)
H5	0.1622	0.4115	0.0284	0.108*
C6	0.1922 (7)	0.471 (2)	0.0994 (6)	0.112 (7)
H6	0.2299	0.5216	0.0877	0.134*
C7	0.1793 (7)	0.464 (2)	0.1555 (6)	0.097 (6)
H7	0.2087	0.5072	0.1796	0.117*
C8	0.1249 (7)	0.394 (2)	0.1730 (6)	0.080 (5)
H8	0.1170	0.3871	0.2092	0.096*
C9	0.0800 (7)	0.3326 (18)	0.1367 (6)	0.055 (4)
C10	-0.0397 (6)	0.3288 (15)	0.2223 (5)	0.043 (3)
H10	-0.0665	0.3773	0.1971	0.052*
C11	-0.0565 (7)	0.3323 (17)	0.2785 (5)	0.051 (4)
C13	-0.1289 (7)	0.421 (2)	0.3469 (6)	0.080 (5)
H13	-0.1660	0.4788	0.3563	0.096*
C14	-0.0916 (9)	0.350 (2)	0.3848 (7)	0.096 (6)
H14	-0.1040	0.3526	0.4202	0.115*
C15	-0.0353 (8)	0.274 (2)	0.3700 (6)	0.083 (6)
H15	-0.0097	0.2252	0.3959	0.099*
C16	-0.0158 (7)	0.2680 (18)	0.3182 (6)	0.065 (4)
H16	0.0238	0.2220	0.3093	0.078*

Fractional atomic coordinates and isot	tropic or l	equivalent	isotropic	displacement	parameters	(Å-	:)
--	-------------	------------	-----------	--------------	------------	-----	----

Atomic displacement parameters $(Å^2)$

 U^{11} U^{22} U^{33} U^{12} U^{13} U^{23}

supplementary materials

C12	0.076 (12)	0.102 (14)	0.042 (10)	0.015 (11)	-0.003 (9)	-0.037 (10)
Pb1	0.0469 (3)	0.0437 (3)	0.0499 (3)	-0.0005 (2)	-0.0006 (4)	-0.0024 (3)
I1	0.0494 (6)	0.0675 (6)	0.0444 (5)	-0.0033 (6)	-0.0076 (4)	-0.0005 (5)
I2	0.0422 (5)	0.0616 (6)	0.0710 (6)	-0.0023 (5)	-0.0070 (5)	-0.0082 (6)
13	0.0676 (6)	0.0681 (6)	0.0432 (5)	-0.0080 (6)	0.0125 (5)	-0.0060 (6)
F1	0.067 (7)	0.161 (10)	0.104 (8)	0.055 (6)	0.000 (6)	-0.021 (7)
N1	0.046 (8)	0.065 (9)	0.035 (8)	0.004 (7)	-0.006 (6)	-0.009 (6)
N2	0.050 (8)	0.080 (9)	0.043 (8)	0.009 (6)	0.010 (6)	-0.005 (6)
C1	0.052 (10)	0.071 (11)	0.059 (11)	0.007 (8)	-0.001 (8)	-0.019 (8)
C2	0.037 (10)	0.117 (15)	0.060 (11)	0.014 (10)	-0.023 (8)	-0.021 (10)
C3	0.044 (10)	0.088 (12)	0.061 (11)	-0.013 (9)	-0.002 (8)	-0.015 (9)
C4	0.039 (10)	0.085 (13)	0.087 (13)	0.008 (9)	0.016 (9)	-0.004 (10)
C5	0.034 (9)	0.190 (19)	0.046 (9)	-0.021 (11)	0.002 (7)	-0.037 (11)
C6	0.059 (11)	0.21 (2)	0.062 (11)	-0.040 (12)	0.019 (10)	-0.037 (13)
C7	0.023 (8)	0.20 (2)	0.066 (11)	-0.017 (11)	0.003 (7)	-0.045 (12)
C8	0.052 (11)	0.124 (16)	0.064 (11)	-0.005 (10)	0.008 (9)	-0.012 (10)
C9	0.043 (10)	0.067 (11)	0.057 (11)	-0.004 (8)	0.013 (8)	-0.013 (9)
C10	0.057 (10)	0.046 (9)	0.027 (8)	0.006 (7)	-0.014 (7)	0.000 (6)
C11	0.044 (9)	0.065 (10)	0.042 (9)	0.001 (8)	0.007 (7)	-0.005 (7)
C13	0.035 (9)	0.134 (15)	0.072 (12)	0.023 (11)	0.016 (8)	-0.017 (12)
C14	0.089 (15)	0.123 (16)	0.077 (15)	0.019 (12)	0.020 (12)	-0.018 (12)
C15	0.071 (14)	0.109 (15)	0.068 (13)	0.014 (11)	-0.011 (10)	0.010 (11)
C16	0.065 (12)	0.095 (13)	0.036 (9)	0.017 (9)	0.005 (9)	-0.004 (9)

Geometric parameters (Å, °)

C12—C13	1.313 (17)	С3—Н3	0.9300
C12—F1	1.359 (16)	C4—C5	1.418 (18)
C12—C11	1.397 (17)	C4—C9	1.446 (18)
Pb1—I3 ⁱ	3.1935 (12)	C5—C6	1.323 (17)
Pb1—I2	3.1938 (11)	С5—Н5	0.9300
Pb1—I1 ⁱ	3.2102 (11)	C6—C7	1.440 (18)
Pb1—I2 ⁱ	3.2339 (11)	С6—Н6	0.9300
Pb1—I3	3.2402 (11)	С7—С8	1.335 (18)
Pb1—I1	3.2761 (11)	С7—Н7	0.9300
I1—Pb1 ⁱⁱ	3.2102 (11)	C8—C9	1.399 (18)
I2—Pb1 ⁱⁱ	3.2339 (11)	C8—H8	0.9300
I3—Pb1 ⁱⁱ	3.1935 (11)	C10—C11	1.457 (16)
N1—C1	1.324 (14)	C10—H10	0.9300
N1—C9	1.366 (15)	C11—C16	1.407 (17)
N1—N2	1.427 (13)	C13—C14	1.355 (19)
N2—C10	1.260 (14)	С13—Н13	0.9300
C1—C2	1.437 (17)	C14—C15	1.373 (19)
С1—Н1	0.9300	C14—H14	0.9300
C2—C3	1.366 (17)	C15—C16	1.368 (17)
С2—Н2	0.9300	С15—Н15	0.9300
C3—C4	1.358 (18)	C16—H16	0.9300
C13—C12—F1	119.5 (15)	C3—C4—C9	120.7 (15)

C13—C12—C11	124.6 (16)	C5—C4—C9	116.5 (15)
F1-C12-C11	115.9 (13)	C6—C5—C4	121.3 (15)
I3 ⁱ —Pb1—I2	94.65 (3)	C6—C5—H5	119.4
I3 ⁱ —Pb1—I1 ⁱ	84.55 (3)	C4—C5—H5	119.4
I2—Pb1—I1 ⁱ	90.95 (3)	C5—C6—C7	121.4 (15)
$I3^{i}$ —Pb1—I2 ⁱ	89.13 (3)	С5—С6—Н6	119.3
I2—Pb1—I2 ⁱ	175.06 (4)	С7—С6—Н6	119.3
$I1^{i}$ —Pb1—I2 ⁱ	86.24 (3)	C8—C7—C6	120.0 (14)
I3 ⁱ —Pb1—I3	96.66 (3)	С8—С7—Н7	120.0
I2—Pb1—I3	89.01 (3)	С6—С7—Н7	120.0
I1 ⁱ —Pb1—I3	178.79 (3)	C7—C8—C9	120.0 (14)
I2 ⁱ —Pb1—I3	93.71 (3)	С7—С8—Н8	120.0
I3 ⁱ —Pb1—I1	179.26 (3)	С9—С8—Н8	120.0
I2—Pb1—I1	85.80 (3)	N1—C9—C8	121.5 (14)
I1 ⁱ —Pb1—I1	96.03 (3)	N1—C9—C4	117.6 (14)
I2 ⁱ —Pb1—I1	90.45 (3)	C8—C9—C4	120.8 (15)
I3—Pb1—I1	82.76 (3)	N2-C10-C11	118.4 (12)
Pb1 ⁱⁱ —I1—Pb1	75.16 (2)	N2	120.8
Pb1—I2—Pb1 ⁱⁱ	75.97 (2)	C11—C10—H10	120.8
Pb1 ⁱⁱ —I3—Pb1	75.88 (2)	C16—C11—C12	115.4 (13)
C1—N1—C9	121.7 (13)	C16—C11—C10	122.6 (13)
C1—N1—N2	120.8 (12)	C12-C11-C10	121.9 (13)
C9—N1—N2	117.0 (12)	C12—C13—C14	119.9 (16)
C10—N2—N1	111.8 (11)	С12—С13—Н13	120.1
N1—C1—C2	121.0 (14)	C14—C13—H13	120.1
N1—C1—H1	119.5	C13—C14—C15	118.9 (17)
C2—C1—H1	119.5	C13—C14—H14	120.6
C3—C2—C1	118.6 (13)	C15-C14-H14	120.6
С3—С2—Н2	120.7	C16-C15-C14	122.0 (16)
C1—C2—H2	120.7	С16—С15—Н15	119.0
C4—C3—C2	120.2 (15)	C14—C15—H15	119.0
С4—С3—Н3	119.9	C15-C16-C11	119.1 (14)
С2—С3—Н3	119.9	C15—C16—H16	120.5
C3—C4—C5	122.9 (16)	C11—C16—H16	120.5

Symmetry codes: (i) -*x*+1/2, *y*+1/2, *z*; (ii) -*x*+1/2, *y*-1/2, *z*.

Fig. 1

Fig. 2